МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Министерство образования и молодежной политики Свердловской области

Управление образования администрации Горноуральского городского округа МАОУ СОШ № 3

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДЕНО
Руководитель МО	зам. директора по УР	директор
Дмитриева Т.В. протокол №1 от «28»	Бурова В.М.	Беломестных Л.П. приказ №95-Д от «29»
августа 2023 г.	J F	августа 2023 г.

РАБОЧАЯ ПРОГРАММА

курса внеурочной деятельности «Основы информатики»

для обучающихся 6 классов

Пояснительная записка

Программа по информатике курса внеурочной деятельности «Основы информатики» составлена соответствии c: требованиями Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО); требованиями к освоения основной образовательной программы результатам (личностным, метапредметным, предметным); основными подходами к развитию и формированию универсальных учебных действий (УУД) для основного общего образования. В ней соблюдается преемственность с федеральным государственным образовательным стандартом начального общего образования; учитываются возрастные и психологические особенности школьников, обучающихся на ступени основного общего образования, учитываются межпредметные связи.

В программе предложен авторский подход в части структурирования учебного материала, определения последовательности его изучения, путей формирования системы знаний, умений и способов деятельности, развития, воспитания и социализации учащихся. Программа является ключевым компонентом учебно-методического комплекта по информатике для основной школы (авторы Л.Л. Босова, А.Ю. Босова; издательство «БИНОМ. Лаборатория знаний»).

Вклад учебного предмета в достижение целей основного общего образования

Методологической основой федеральных государственных образовательных стандартов является системно-деятельностный подход, в рамках которого реализуются современные стратегии обучения, предполагающие использование информационных и коммуникационных технологий (ИКТ) в процессе изучения всех предметов, во внеурочной и внешкольной деятельности на протяжении всего периода обучения в школе. учебно-воспитательного процесса в современной образовательной среде является необходимым условием формирования информационной культуры современного школьника, достижения им ряда образовательных результатов, связанных необходимостью использования информационных коммуникационных технологий.

Средства ИКТ не только обеспечивают образование с использованием той же технологии, которую учащиеся применяют для связи и развлечений вне школы (что важно само по себе с точки зрения социализации учащихся в современном информационном обществе), но и создают условия для индивидуализации учебного процесса, повышения его эффективности и результативности. На протяжении всего периода существования школьного курса информатики преподавание этого предмета было тесно связано с информатизацией школьного образования: именно в рамках курса информатики школьники знакомились с теоретическими основами информационных технологий, овладевали практическими навыками использования средств ИКТ, которые потенциально могли применять при изучении других школьных предметов и в повседневной жизни.

Термин «основная школа» относится к двум различным возрастным группам учащихся: к школьникам 10-12 лет и к школьникам 12–15 лет, которых принято называть подростками. В процессе обучения в 5-6 классах фактически происходит переход из начальной в основную школу; в 7 классе уже можно увидеть отчетливые различия учебной деятельности младших школьников и подростков.

Изучение информатики в 5-6 классах вносит значительный вклад в достижение главных целей основного общего образования, способствуя:

• развитию общеучебных умений и навыков на основе средств и методов информатики и ИКТ, в том числе овладению умениями работать с различными видами информации, самостоятельно планировать и осуществлять индивидуальную и коллективную информационную деятельность, представлять и оценивать ее результаты;

- *целенаправленному формирование* таких *общеучебных понятий*, как «объект», «система», «модель», «алгоритм» и др.;
- воспитанию ответственного и избирательного отношения к информации; развитию познавательных, интеллектуальных и творческих способностей учащихся.

Общая характеристика учебного предмета

Информатика — это естественнонаучная дисциплина о закономерностях протекания информационных процессов в системах различной природы, а также о методах и средствах их автоматизации.

Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий – одного из наиболее значимых технологических достижений современной цивилизации. Вместе с математикой, физикой, химией, биологией курс информатики закладывает основы естественнонаучного мировоззрения.

Информатика имеет большое и все возрастающее число междисциплинарных связей, причем как на уровне понятийного аппарата, так и на уровне инструментария. Многие предметные знания и способы деятельности (включая использование средств ИКТ), освоенные обучающимися на базе информатики, находят применение как в рамках образовательного процесса при изучении других предметных областей, так и в иных жизненных ситуациях, становятся значимыми для формирования качеств личности, т. е. ориентированы на формирование метапредметных и личностных результатов. На протяжении всего периода становления школьной информатики в ней накапливался опыт формирования образовательных результатов, которые в настоящее время принято называть современными образовательными результатами.

Одной из основных черт нашего времени является всевозрастающая изменчивость окружающего мира. В этих условиях велика роль фундаментального образования, обеспечивающего профессиональную мобильность человека, готовность его к освоению новых технологий, в том числе, информационных. Необходимость подготовки личности к быстро наступающим переменам в обществе требует развития разнообразных форм мышления, формирования у учащихся умений организации собственной учебной деятельности, их ориентации на деятельную жизненную позицию.

В содержании курса информатики основной школы целесообразно сделать акцент на изучении фундаментальных основ информатики, формировании информационной культуры, развитии алгоритмического мышления, реализовать в полной мере общеобразовательный потенциал этого курса.

Курс информатики основной школы является частью непрерывного курса информатики, который включает в себя также пропедевтический курс в начальной школе и обучение информатике в старших классах (на базовом или профильном уровне). В настоящей программе учтено, что сегодня, в соответствии с Федеральным государственным стандартом начального образования, учащиеся к концу начальной школы должны обладать ИКТ-компетентностью, достаточной для дальнейшего обучения. Далее, в основной школе, начиная с 5-го класса, они закрепляют полученные технические навыки и развивают их в рамках применения при изучении всех предметов. Курс информатики основной школы, опирается на опыт постоянного применения ИКТ, уже имеющийся у учащихся, дает теоретическое осмысление, интерпретацию и обобщение этого опыта.

Место учебного предмета в учебном плане

В учебном плане основной школы информатика представлена как подготовительный курс изучения информатики в VI классе (34 часа).

Личностные, метапредметные и предметные результаты освоения информатики

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
- понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание

- алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Содержание учебного предмета

Структура содержания общеобразовательного предмета (курса) информатики в 6 классе основной школы может быть определена следующими укрупнёнными тематическими блоками (разделами):

- информация вокруг нас;
- информационные технологии;
- информационное моделирование;
- алгоритмика.

Раздел 1. Информационное моделирование

Объекты и их имена. Признаки объектов: свойства, действия, поведение, состояния. Отношения объектов. Разновидности объектов и их классификация. Состав объектов. Системы объектов.

Модели объектов и их назначение. Информационные модели. Словесные информационные модели. Простейшие математические модели.

Табличные информационные модели. Структура и правила оформления таблицы. Простые таблицы. Табличное решение логических задач.

Вычислительные таблицы. Графики и диаграммы. Наглядное представление о соотношении величин. Визуализация многорядных данных.

Многообразие схем. Информационные модели на графах. Деревья.

Раздел 2. Алгоритмика

Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Черепаха, Кузнечик, Водолей и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд. Управление исполнителями с помощью команд и их последовательностей.

Что такое алгоритм. Различные формы записи алгоритмов (нумерованный список, таблица, блок-схема). Примеры линейных алгоритмов, алгоритмов с ветвлениями и повторениями (в повседневной жизни, в литературных произведениях, на уроках математики и т.д.).

Составление алгоритмов (линейных, с ветвлениями и циклами) для управления исполнителями Чертёжник, Водолей и др.

Планируемые результаты изучения информатики

Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования уточняют и конкретизируют общее понимание личностных, метапредметных и предметных результатов как с позиции организации их достижения в образовательном процессе, так и с позиции оценки достижения этих результатов.

Планируемые результаты сформулированы к каждому разделу учебной программы.

Планируемые результаты, характеризующие систему учебных действий в отношении опорного учебного материала, размещены в рубрике «Выпускник научится ...». Они показывают, какой уровень освоения опорного учебного материала ожидается от выпускника. Эти результаты потенциально достигаемы большинством учащихся и выносятся на итоговую оценку как задания базового уровня (исполнительская компетентность) или задания повышенного уровня (зона ближайшего развития).

Планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих опорную систему, размещены в рубрике «Выпускник получит возможность научиться ...». Эти результаты достигаются отдельными мотивированными и способными учащимися; они не

отрабатываются со всеми группами учащихся в повседневной практике, но могут включаться в материалы итогового контроля.

Раздел 1. Информационное моделирование Выпускник научится:

- понимать сущность понятий «модель», «информационная модель»;
- различать натурные и информационные модели, приводить их примеры;
- «читать» информационные модели (простые таблицы, круговые и столбиковые диаграммы, схемы и др.), встречающиеся в повседневной жизни;
- перекодировать информацию из одной пространственно-графической или знаковосимволической формы в другую, в том числе использовать графическое представление (визуализацию) числовой информации;
- строить простые информационные модели объектов из различных предметных областей.

Ученик получит возможность:

- сформировать начальные представления о о назначении и области применения моделей; о моделировании как методе научного познания;
- приводить примеры образных, знаковых и смешанных информационных моделей;
- познакомится с правилами построения табличных моделей, схем, графов, деревьев;
- выбирать форму представления данных (таблица, схема, график, диаграмма, граф, дерево) в соответствии с поставленной задачей.

Раздел 2. Алгоритмика

Выпускник научится:

- понимать смысл понятия «алгоритм», приводить примеры алгоритмов;
- понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя»; приводить примеры формальных и неформальных исполнителей;
- осуществлять управление имеющимся формальным исполнителем;
- понимать правила записи и выполнения алгоритмов, содержащих алгоритмические конструкции «следование», «ветвление», «цикл»;
- подбирать алгоритмическую конструкцию, соответствующую заданной ситуации;
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд;
- разрабатывать план действий для решения задач на переправы, переливания и пр.;

Выпускник получит возможность:

- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- по данному алгоритму определять, для решения какой задачи он предназначен;
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции и вспомогательные алгоритмы.

Учебно-тематический план

No	Название темы	Количество часов		
		общее	теория	практика
1	Объекты и системы	8	6	2
2	Информационные модели	14	5	9
3	Алгоритмика	12	3	9
	Итого:	34	14	20

Тематическое планирование с определением основных видов учебной деятельности

Примерные темы, раскрывающие		
основное		
содержание	Основное содержание по	Характеристика деятельности
программы, и число часов,	темам	ученика
отводимых на		
каждую тему		
Тема 1. Объекты и	Объекты и их имена.	Аналитическая деятельность:
системы (8 часов)	Признаки объектов:	• анализировать объекты
	свойства, действия,	окружающей
	поведение, состояния. Отношения объектов.	действительности, указывая их признаки—
	Разновидности объектов и	указывая их признаки — свойства, действия,
	их классификация. Состав	поведение, состояния;
	объектов. Системы	• выявлять отношения,
	объектов. Система и	связывающие данный
	окружающая среда.	объект с другими
	Персональный	объектами;
	компьютер как система. Файловая система.	• осуществлять деление
	Операционная система.	заданного множества объектов на классы по
		заданному или
		самостоятельно
		выбранному признаку —
		основанию
		классификации;
		• приводить примеры
		материальных, нематериальных и
		смешанных систем.
		Практическая деятельность:
		 изменять свойства рабочего стола: тему,
		рабочего стола: тему, фоновый рисунок,
		заставку;
		• изменять свойства
		панели задач;
		• узнавать свойства
		компьютерных объектов
		(устройств, папок, файлов) и возможных
		фаилов) и возможных действий с ними;
		• упорядочивать
		информацию в личной
T. •		папке.
Тема 2.	Модели объектов и их	Аналитическая деятельность:

Информационные модели (14 часов)

назначение.

Информационные модели. Словесные информационные модели. Простейшие математические модели.

Табличные информационные модели. Структура и правила оформления таблицы. Простые табличное решение логических задач.

Вычислительные таблицы. Графики и диаграммы. Наглядное представление о соотношении величин. Визуализация многорядных данных.

Многообразие схем. Информационные модели на графах. Деревья.

- различать натурные и информационные модели, изучаемые в школе,
 - приводить примеры использования таблиц, диаграмм, схем, графов и т.д. при описании объектов окружающего мира.

встречающиеся в жизни;

Практическая деятельность:

- создавать словесные модели (описания);
- создавать
 многоуровневые списки;
- создавать табличные модели;
- создавать простые вычислительные таблицы, вносить в них информацию и проводить несложные вычисления;
- создавать диаграммы и графики;
- создавать схемы, графы, деревья;
- создавать графические модели.

Тема 3. Алгоритмика (12 часов)

Понятие исполнителя. Неформальные формальные исполнители. Учебные исполнители (Черепаха, Кузнечик, Водолей и др.) как примеры формальных исполнителей. Их назначение, среда, режим система работы, команд. Управление исполнителями с помощью команд и их последовательностей.

Что такое алгоритм. Различные формы записи алгоритмов (нумерованный список, таблица, блоксхема). Примеры линейных алгоритмов, алгоритмов ветвлениями И повторениями (в повседневной жизни, В литературных

Аналитическая деятельность:

- приводить примеры формальных и неформальных исполнителей;
- придумывать задачи по управлению учебными исполнителями;
- выделять примеры ситуаций, которые могут быть описаны с помощью линейных алгоритмов, алгоритмов с ветвлениями и циклами.

Практическая деятельность:

- составлять линейные алгоритмы по управлению учебным исполнителем;
- составлять вспомогательные

произведениях, на уроках	алгоритмы для
математики и т.д.).	управления учебными
Составление	исполнителем;
алгоритмов (линейных, с	• составлять циклические
ветвлениями и циклами) для	алгоритмы по
управления исполнителями	управлению учебным
Чертёжник, Водолей и др.	исполнителем.

Поурочное планирование

6 класс

1.	Цели изучения курса информатики. Техника	Введение, §1
	безопасности и организация рабочего места.	
	Объекты окружающего мира	
2.	Объекты операционной системы.	§2(3)
	Практическая работа №1 «Работаем с основными	
	объектами операционной системы»	
3.	Файлы и папки. Размер файла.	§2(1,2)
	Практическая работа №2 «Работаем с объектами	
	файловой системы»	
4.	Разнообразие отношений объектов и их множеств.	§3 (1, 2)
	Отношения между множествами.	
	Практическая работа №3 «Повторяем возможности	
	графического редактора – инструмента создания	
	графических объектов» (задания 1-3)	
5.	Отношение «входит в состав».	§3 (3)
	Практическая работа №3 «Повторяем возможности	
	графического редактора – инструмента создания	
	графических объектов» (задания 5-6)	
6.	Разновидности объекта и их классификация.	§4 (1, 2)
7.	Классификация компьютерных объектов.	§4 (1, 2, 3)
	Практическая работа №4 «Повторяем возможности	
	текстового процессора – инструмента создания	
	текстовых объектов»	
8.	Системы объектов. Состав и структура системы	§5 (1, 2)
	Практическая работа №5 «Знакомимся с	
	графическими возможностями текстового	
	процессора» (задания 1–3)	0.7 (2.4)
9.	Система и окружающая среда. Система как черный	§5 (3, 4)
	ящик.	
	Практическая работа №5 «Знакомимся с	
	графическими возможностями текстового	
10	процессора» (задания 4–5)	0.6
10.	Персональный компьютер как система.	§6
	Практическая работа №5 «Знакомимся с	
	графическими возможностями текстового	
1.1	процессора» (задание 6)	07
11.	Способы познания окружающего мира.	§7
	Практическая работа №6 «Создаем компьютерные	
	документы»	

12.	Понятие как форма мышления. Как образуются понятия.	§8 (1, 2)
	Практическая работа №7 «Конструируем и исследуем графические объекты» (задание 1)	
13.	Определение понятия.	§8 (3)
	Практическая работа №7 «Конструируем и	3 - (-)
	исследуем графические объекты» (задания 2, 3)	
14.	Информационное моделирование как метод	§9
	познания.	
	Практическая работа №8 «Создаём графические	
	модели»	
15.	Знаковые информационные модели. Словесные	§10 (1, 2, 3)
	(научные, художественные) описания.	
	Практическая работа №9 «Создаём словесные	
	модели»	
16.	Математические модели.	§10 (4)
	Многоуровневые списки.	
	Практическая работа №10 «Создаём	
	многоуровневые списки»	
17.	Табличные информационные модели. Правила	§11 (1, 2)
	оформления таблиц.	
	Практическая работа №11 «Создаем табличные	
10	модели»	011 (2 4)
18.	Решение логических задач с помощью нескольких	§11 (3, 4)
	таблиц. Вычислительные таблицы.	
	Практическая работа №12 «Создаем	
19.	вычислительные таблицы в текстовом процессоре» Графики и диаграммы. Наглядное представление	§12
19.	процессов изменения величин и их соотношений.	812
	процессов изменения величин и их соотношении. Практическая работа №12 «Создаём	
	информационные модели – диаграммы и графики»	
	(задания 1–4)	
20.	Создание информационных моделей – диаграмм.	§12
	Выполнение мини-проекта «Диаграммы вокруг	312
	Hac»	
21.	Многообразие схем и сферы их применения.	§13 (1)
	Практическая работа №14 «Создаём	
	информационные модели – схемы, графы, деревья»	
	(задания 1, 2, 3)	
22.	Информационные модели на графах.	§13 (2, 3)
	Использование графов при решении задач.	
	Практическая работа №14 «Создаём	
	информационные модели – схемы, графы, деревья»	
	(задания 4 и 6)	
23.	Что такое алгоритм.	§14
	Работа в среде виртуальной лаборатории	
	«Переправы»	0.4.5
24.	Исполнители вокруг нас.	§15
2.7	Работа в среде исполнителя Кузнечик	016
25.	Формы записи алгоритмов.	§16
	Работа в среде исполнителя Водолей	

26.	Линейные алгоритмы. Практическая работа №15 «Создаем линейную	§17 (1)
	презентацию»	
27.	Алгоритмы с ветвлениями.	§17 (2)
	Практическая работа №16 «Создаем презентацию с	
	гиперссылками»	
28.	Алгоритмы с повторениями.	§17 (3)
	Практическая работа №16 «Создаем циклическую	
	презентацию»	
29.	Исполнитель Чертежник. Пример алгоритма	§18 (1, 2)
	управления Чертежником.	
	Работа в среде исполнителя Чертёжник	
30.	Использование вспомогательных алгоритмов.	§18 (3)
	Работа в среде исполнителя Чертёжник	
31.	Алгоритмы с повторениями для исполнителя	§18 (4)
	Чертёжник.	
	Работа в среде исполнителя Чертёжник	
32.	Обобщение и систематизации изученного по теме	
	«Алгоритмика»	
Итоговое	повторение	
33-34	Выполнение и защита итогового проекта.	

Перечень учебно-методического обеспечения по информатике для 5-6 классов

- 1. Босова Л.Л., Босова А.Ю. Информатика: Учебник для 6 класса. М.: БИНОМ. Лаборатория знаний, 2013.
- 2. Босова Л.Л., Босова А.Б. Информатика: рабочая тетрадь для 6 класса. М.: БИНОМ. Лаборатория знаний, 2013
- 3. Босова Л.Л., Босова А.Ю. Информатика. 5–6 классы : методическое пособие. М.: БИНОМ. Лаборатория знаний, 2013.
- 4. Босова Л.Л., Босова А.Ю. Электронное приложение к учебнику «Информатика. 6 класс»
- 5. Материалы авторской мастерской Босовой Л.Л. (metodist.lbz.ru/)

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 98972918216828532255789598799073225606492451622

Владелец Беломестных Людмила Павловна

Действителен С 29.06.2023 по 28.06.2024