Муниципальное автономное общеобразовательное учреждение средняя общеобразовательная школа № 3

Рассмотрено на заседании МО протокол № 1 от 28.08.2023

Согласовано зам. директора по УР Бурова В.М._____ Утверждено Директором МАОУ СОШ №3 Беломестных Л.П.

> приказ № 95-Д от 29.08.2023

Дмитриева Т.В.

Рабочая программа по учебному предмету «Практикум решения задач по физике» для учащихся 10 и 11 класса

Пояснительная записка

Курс рассчитан на учащихся 10-11 классов с расширенным изучением физики и предполагает совершенствование подготовки школьников по освоению основных разделов физики, в этом и состоит его актуальность.

Составлена программа на основе программы авторов: В.А.Орлов, Ю.А. Сауров. Методы решения физических задач./ Программы элективных курсов. Физика. 9-11 классы. Профильное обучение /сост. В.А. Коровин. – М.: Дрофа, 2007.

Основные цели курса:

- 1. Развитие интереса к физике и решению задач по физике;
- 2. Совершенствование полученных в основном курсе знаний и умений;
- 3. Формирование представлений о постановке, классификации, приемах и методах решения школьных задач по физике.

Основные задачи курса:

- -развить физическую интуицию, выработать определенную технику, чтобы быстро улавливать физическое содержание задачи и справиться с предложенными экзаменационными заданиями;
 - овладеть аналитическими методами исследования различных явлений природы;
- овладение обучающимися обобщенными методами решения вычислительных, графических, качественных и экспериментальных задач как действенному средству формирования физических знаний и учебных умений;
- развитие мышления учащимися, их познавательной активности и самостоятельности, формированию современного понимания науки;
- интеллектуальное развитие учащихся, которое обеспечит им переход от обучения к самообразованию.

В результате изучения курса учащиеся должны:

- понимать сущность метода научного познания окружающего мира:
- приводить примеры опытов, обосновывающих научные представления и законы: относительность механического движения; существование двух видов (знаков) электрического заряда; закон Кулона;
- приводить примеры опытов, позволяющих проверить законы и их следствия, подтвердить теоретические представления о природе физических явлений; закон сохранения импульса;
- используя теоретические модели, объяснять физические явления: независимость ускорения от массы тел при их свободном падении;
- указывать границы применимости научных моделей, закона сохранения импульса; закона сохранения механической энергии; механики Ньютона (классической механики);
 - владеть понятиями и законами физики;

раскрывать смысл физических законов: закона Ньютона, всемирного тяготения, сохранения импульса и энергии, сохранения электрического заряда, Кулона, закона Ома для полной цепи, законов Кирхгофа;

- вычислять: ускорение тела по заданным силам, действующим на тело, и его массе; скорости тел после неупругого столкновения по заданным скоростям и массам сталкивающихся тел; скорость тела, используя закон сохранения механической энергии; силу взаимодействия между двумя точечными неподвижными зарядами в вакууме; силу, действующую на электрический заряд в электрическом поле; ЭДС источника тока, силу тока, напряжение и сопротивление в электрических цепях;
 - определять вид движения электрического заряда в однородном электрическом поле;
- описывать преобразования энергии при свободном падении тел; движении тел с учетом трения; протекании электрического тока по проводнику.

Программа элективного курса согласована с требованиями государственного образовательного стандарта и единого содержания образования. Она ориентирует учителя на дальнейшее совершенствование уже усвоенных учащимися знаний и умений. Для этого вся программа делится

на несколько разделов. Первый раздел знакомит школьников с минимальными сведениями о понятии «задача», дает представление о значении задач в жизни, науке, технике, знакомит с различными сторонами работы с задачами. В частности, они должны знать основные приемы составления задач, уметь классифицировать задачу по трем-четырем основаниям. В первом разделе при решении задач особое внимание уделяется последовательности действий, анализу физического явления, проговариванию вслух решения, анализу полученного ответа. Если в начале раздела для иллюстрации используются задачи из механики, молекулярной физики, электродинамики, то в дальнейшем решаются задачи из разделов курса физики 11 класса. При повторении обобщаются, систематизируются как теоретический материал, так и приемы решения задач, принимаются во внимание цели повторения при подготовке к единому государственному экзамену. Особое внимание следует уделить задачам, связанным с профессиональными интересами учащихся, а также задачам межпредметного содержания. При работе с задачами следует обращать внимание на мировоззренческие и методологические обобщения: потребности общества и постановка задач, задачи из истории физики, значение математики для решения задач, ознакомление с системным анализом физических явлений при решении задач и др.

При изучении первого раздела возможны различные формы занятий: рассказ и беседа учителя, выступление учащихся, подробное объяснение примеров решения задач, коллективная постанов-ка экспериментальных задач, индивидуальная и коллективная работа по составлению задач, конкурс на составление лучшей задачи, знакомство с различными задачниками и т. д.

В результате учащиеся должны уметь классифицировать предложенную задачу, составлять простейшие задачи, последовательно выполнять и проговаривать этапы решения задач средней сложности.

При решении задач по механике, молекулярной физике, электродинамике главное внимание обращается на формирование умений решать задачи, на накопление опыта решения задач различной трудности. Развивается самая общая точка зрения на решение задачи как на описание того или иного физического явления физическими законами. Содержание тем подобрано так, чтобы формировать при решении задач основные методы данной физической теории.

Содержание программных тем обычно состоит из трех компонентов. Во-первых, в ней определены задачи по содержательному признаку; во-вторых, выделены характерные задачи или задачи на отдельные приемы; в-третьих, даны указания по организации определенной деятельности с задачами. Задачи учитель подбирает исходя из конкретных возможностей учащихся. Рекомендуется, прежде всего, использовать задачники из федерального списка литературы. При этом следует подбирать задачи технического и краеведческого содержания, занимательные и экспериментальные. На занятиях применяются коллективные и индивидуальные формы работы: постановка, решение и обсуждение решения задач, подготовка к олимпиаде, подбор и составление задач на тему и т. д. Предполагается также выполнение домашних заданий по решению задач. В итоге учащиеся могут выйти на теоретический уровень решения задач: решение по определенному плану, владение основными приемами решения, осознание деятельности по решению задачи, самоконтроль и самооценка, моделирование физических явлений и т. д.

Технологиями, позволяющими реализовать заявленные подходы, являются следующие базовые технологии:

технология уровневой дифференциации, предполагающая дифференциацию и открытость требований к уровню усвоения, предъявление образцов деятельности, явное выделение базового и повышенных уровней, посильность базового уровня, обязательность его усвоения всеми учащимися;

информационно-коммуникационные технологии, позволяющие использовать в образовательном процессе не только открытое (но контролируемое) информационное пространство, но и разные способы обработки и подачи информации, предоставляющие большой выбор различных сообществ, интересных ребенку, помогающих ему определиться с определением своего профессионального пути.

Дидактическая целевая установка урока определяет его тип и структуру. В образовательном процессе лицея используются как традиционные типы уроков, так и нестандартные:

уроки усвоения новых знаний;

урок формирования умений и навыков;

урок применения знаний, умений, навыков;

урок обобщения и систематизации знаний, умений и навыков;

комбинированный урок;

проблемный урок;

интегрированные уроки;

уроки взаимного обучения.

Какой бы тип и структуру урока в зависимости от дидактической цели ни выбрал учитель, они должны способствовать:

формированию у учащихся положительной мотивации и потребности в знаниях (чувства долга, ответственности, ситуации успеха, объективной оценки, перспективы обучения: далекой, близкой, на каждом уроке);

созданию условий для познавательной самостоятельности, активности и инициативы учащихся;

соблюдению санитарно-гигиенических норм;

оптимизации образовательного процесса (учет условий обучения и индивидуальных особенностей учащихся; соблюдение дидактических принципов обучения, использование активизирующих методов и средств обучения).

Согласно УП МАОУ СОШ№3 на изучение предмета «Практикум решения задач по физике» отводится по 2 часа в неделю в 10 кл и 2 часа в 11 кл, всего 68 часов в каждом классе, за два года обучения 136 часов.

Планируемые результаты освоения программы по физике на уровне среднего общего образования

Освоение учебного предмета «Физика» на уровне среднего общего образования (базовый уровень) должно обеспечить достижение следующих личностных, метапредметных и предметных образовательных результатов.

Личностные результаты

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;

готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма;

ценностное отношение к государственным символам, достижениям российских учёных в области физики и техники;

3) духовно-нравственного воспитания:

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;

осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

сформированность экологической культуры, осознание глобального характера экологических проблем;

планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;

расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития физической науки;

осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия

Базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

определять цели деятельности, задавать параметры и критерии их достижения;

выявлять закономерности и противоречия в рассматриваемых физических явлениях; разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

владеть научной терминологией, ключевыми понятиями и методами физической науки;

владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;

владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;

давать оценку новым ситуациям, оценивать приобретённый опыт;

уметь переносить знания по физике в практическую область жизнедеятельности;

уметь интегрировать знания из разных предметных областей;

выдвигать новые идеи, предлагать оригинальные подходы и решения;

ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;

оценивать достоверность информации;

использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

осуществлять общение на уроках физики и во внеурочной деятельности;

распознавать предпосылки конфликтных ситуаций и смягчать конфликты;

развёрнуто и логично излагать свою точку зрения с использованием языковых средств;

понимать и использовать преимущества командной и индивидуальной работы;

выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия

Самоорганизация:

самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;

самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;

использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению;

принимать мотивы и аргументы других при анализе результатов деятельности; принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;

саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;

эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;

социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

Предметные результаты

К концу обучения в 10 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;

учитывать границы применения изученных физических моделей: материальная точка, инерциальная система отсчёта, абсолютно твёрдое тело, идеальный газ, модели строения газов, жидкостей и твёрдых тел, точечный электрический заряд при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов механики, молекулярно-кинетической теории строения вещества и электродинамики: равномерное и равноускоренное прямолинейное движение, свободное падение тел, движение по окружности, инерция, взаимодействие тел, диффузия, броуновское движение, строение жидкостей и твёрдых тел, изменение объёма тел при нагревании (охлаждении), тепловое равновесие, испарение, конденсация, плавление, кристаллизация, кипение, влажность воздуха, повышение давления газа при его нагревании в закрытом сосуде, связь между параметрами состояния газа в изопроцессах, электризация тел, взаимодействие зарядов;

описывать механическое движение, используя физические величины: координата, путь, перемещение, скорость, ускорение, масса тела, сила, импульс тела, кинетическая энергия, потенциальная энергия, механическая работа, механическая мощность; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинами;

описывать изученные тепловые свойства тел и тепловые явления, используя физические величины: давление газа, температура, средняя кинетическая энергия хаотического движения молекул, среднеквадратичная скорость молекул, количество теплоты, внутренняя энергия, работа газа, коэффициент полезного действия теплового двигателя; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, находить формулы, связывающие данную физическую величину с другими величинам;

описывать изученные электрические свойства вещества и электрические явления (процессы), используя физические величины: электрический заряд, электрическое поле, напряжённость поля, потенциал, разность потенциалов; при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы; указывать формулы, связывающие данную физическую величину с другими величинами;

анализировать физические процессы и явления, используя физические законы и принципы: закон всемирного тяготения, I, II и III законы Ньютона, закон сохранения механической энергии, закон сохранения импульса, принцип суперпозиции сил, принцип равноправия инерциальных систем отсчёта, молекулярно-кинетическую теорию строения вещества, газовые законы, связь средней кинетической энергии теплового движения молекул с абсолютной температурой, первый закон термодинамики, закон сохранения электрического заряда, закон Кулона, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

объяснять основные принципы действия машин, приборов и технических устройств;

различать условия их безопасного использования в повседневной жизни;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений, при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости между физическими величинами с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научнопопулярной информации, полученной из различных источников, критически анализировать получаемую информацию;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

К концу обучения **в 11 классе** предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;

учитывать границы применения изученных физических моделей: точечный электрический заряд, луч света, точечный источник света, ядерная модель атома, нуклонная модель атомного ядра при решении физических задач;

распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная ин-

дукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны, прямолинейное распространение света, отражение, преломление, интерференция, дифракция и поляризация света, дисперсия света, фотоэлектрический эффект (фотоэффект), световое давление, возникновение линейчатого спектра атома водорода, естественная и искусственная радиоактивность;

описывать изученные свойства вещества (электрические, магнитные, оптические, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, сила Лоренца, индуктивность катушки, энергия электрического и магнитного полей, период и частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний, фокусное расстояние и оптическая сила линзы, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;

описывать изученные квантовые явления и процессы, используя физические величины: скорость электромагнитных волн, длина волны и частота света, энергия и импульс фотона, период полураспада, энергия связи атомных ядер, при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами, вычислять значение физической величины;

анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца, закон электромагнитной индукции, закон прямолинейного распространения света, законы отражения света, законы преломления света, уравнение Эйнштейна для фотоэффекта, закон сохранения энергии, закон сохранения импульса, закон сохранения электрического заряда, закон сохранения массового числа, постулаты Бора, закон радиоактивного распада, при этом различать словесную формулировку закона, его математическое выражение и условия (границы, области) применимости;

определять направление вектора индукции магнитного поля проводника с током, силы Ампера и силы Лоренца;

строить и описывать изображение, создаваемое плоским зеркалом, тонкой линзой;

выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;

осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;

исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использовани-

ем измерительных устройств и лабораторного оборудования;

решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;

использовать при решении учебных задач современные информационные технологии для поиска, структурирования, интерпретации и представления учебной и научнопопулярной информации, полученной из различных источников, критически анализировать получаемую информацию;

объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

использовать теоретические знания по физике в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде;

работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

Используемая литература: Физика, 10 класс/ Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. под редакцией Парфентьевой Н.А., Акционерное общество «Издательство «Просвещение» Физика, 11 класс/ Мякишев Г.Л., Буховцев Б.Б., Чаругин В.М. под редакцией Парфентьевой Н.А., Акционерное общество «Издательство «Просвещение»

Электронные (цифровые) образовательные ресурсы Библиотека ЦОК

«Библиотека наглядных пособий»

Электронная программа «физика в картинках»

Содержание курса в 10 классе

1. Физическая задача. Классификация задач по механике. (6 ч)

Общие требования при решении физических задач. Этапы решения физической задачи. Работа с текстом задачи. Анализ физического явления; формулировка идеи решения (план решения). Выполнение плана решения задачи. Числовой расчет. Использование вычислительной техники для расчетов. Анализ решения и его значение. Оформление решения.

Типичные недостатки при решении и оформлении решения физической задачи. Изучение примеров решения задач. Различные приемы и способы решения: алгоритмы, аналогии, геометрические приемы. Метод размерностей, графические решения и т. д.

Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы точек, твердого тела под действием нескольких сил. Задачи на определение характеристик равновесия физических систем. Задачи на принцип относительности: кинематические и динамические характеристики движения тела в разных инерциальных системах отсчета.

Подбор, составление и решение по интересам различных сюжетных задач: занимательных, экспериментальных с бытовым содержанием, с техническим и краеведческим содержанием, военно-техническим содержанием.

Классификация задач по механике: решение задач средствами кинематики, динамики, с помощью законов сохранения.

Задачи на закон сохранения импульса и реактивное движение. Задачи на определение работы и мощности. Задачи на закон сохранения и превращения механической энергии.

Решение задач несколькими способами. Составление задач на заданные объекты или явления. Взаимопроверка решаемых задач. Знакомство с примерами решения задач по механике республиканских и международных олимпиад.

Конструкторские задачи и задачи на проекты: модель акселерометра, модель маятника Фуко, модель кронштейна, модель пушки с противооткатным устройством, проекты самодвижущихся тележек, проекты устройств для наблюдения невесомости, модель автоколебательной системы.

2. Задачи по молекулярно-кинетической теории и термодинамике (12ч)

Качественные задачи на основные положения и основное уравнение молекулярнокинетической теории (МКТ). Задачи на описание поведения идеального газа: основное уравнение МКТ, определение скорости молекул, характеристики состояния газа в изопроцессах.

Задачи на свойства паров: использование уравнения Менделеева — Клапейрона, характеристика критического состояния. Комбинированные задачи на первый закон термодинамики. Задачи на тепловые двигатели.

Конструкторские задачи и задачи на проекты: модель газового термометра; модель предохранительного клапана на определенное давление; проекты использования газовых процессов для подачи сигналов; модель тепловой машины; проекты практического определения радиуса тонких капилляров.

3. Строение и свойства газов, жидкостей и твердых тел (8 ч)

Задачи на описание явлений поверхностного слоя; работа сил поверхностного натяжения, капиллярные явления, избыточное давление в мыльных пузырях. Задачи на определение характеристик влажности воздуха.

Задачи на определение характеристик твердого тела: абсолютное и относительное удлинение, тепловое расширение, запас прочности, сила упругости.

Качественные и количественные задачи. Устный диалог при решении качественных задач. Графические и экспериментальные задачи, задачи бытового содержания.

4. Классификация задач по теме «Электрическое поле» (12ч)

Характеристика решения задач раздела: общее и разное, примеры и приемы решения.

Задачи разных видов на описание электрического поля различными средствами: законами сохранения заряда и законом Кулона, силовыми линиями, напряженностью, разностью потенциа-

лов, энергией. Решение задач на описание систем конденсаторов.

Движение зарядов в электрических полях

5. Правила и приемы решения задач по теме «Законы постоянного тока» (10ч)

Задачи на различные приемы расчета сопротивления сложных электрических цепей. Задачи разных видов на описание электрических цепей постоянного электрического тока с помощью закона Ома для замкнутой цепи, закона Джоуля — Ленца, законов последовательного и параллельного соединений. Ознакомление с правилами Кирхгофа при решении задач. Постановка и решение фронтальных экспериментальных задач на определение показаний приборов при изменении сопротивления тех или иных участков цепи, на определение сопротивлений участков цепи и т. д. Решение задач на расчет участка цепи, имеющей ЭДС.

6. Магнитное поле и электромагнитная индукция. (10 ч)

Задачи разных видов на описание магнитного поля тока и его действия: магнитная индукция и магнитный поток, сила Ампера и сила Лоренца.

Ускорители и МГД генераторы.

Задачи на описание явления электромагнитной индукций.

Решение качественных экспериментальных задач с использованием электрометра, магнитного зонда и другого оборудования.

Ток в различных средах (10 ч)

Задачи на описание постоянного электрического тока в электролитах, вакууме, газах, полупроводниках: характеристика носителей, характеристика конкретных явлений и др. Качественные, экспериментальные, занимательные задачи, задачи с техническим содержанием, комбинированные задачи.

Конструкторские задачи на проекты: установка для нагревания жидкости на заданную температуру, модель автоматического устройства с электромагнитным реле, проекты и модели освещения, выпрямитель и усилитель на полупроводниках, модели измерительных приборов, модели «черного ящика».

Содержание курса в 11 классе Электромагнитные колебания (14 ч)

Задачи разных видов на описание явления электромагнитной индукций: закон электромагнитной индукции, правило Ленца, индуктивность.

Задачи на переменный электрический ток: характеристики переменного электрического тока, электрические машины, трансформатор.

Групповое и коллективное решение экспериментальных задач с использованием осциллографа, звукового генератора, трансформатора, комплекта приборов для изучения свойств электромагнитных волн, электроизмерительных приборов.

«Экскурсия» в интернет с целью сбора данных для составления задач.

Конструкторские задачи и задачи на проекты: плоский конденсатор заданной емкости, генераторы различных колебаний, прибор для измерения освещенности, модель передачи электроэнергии и др.

1. Электромагнитные волны (8 ч)

Задачи на описание различных свойств электромагнитных волн: скорость, отражение, преломление, интерференция, дифракция, поляризация.

2. Световые волны. (14ч)

Задачи по геометрической оптике: зеркала, оптические схемы. Классификация задач по СТО и примеры их решения. Задачи на описание различных свойств световых волн: скорость, отражение, преломление, интерференция, дифракция, поляризация. Задачи на определение оптической схемы, содержащейся в «черном ящике»: конструирование, приемы и примеры решения.

3. Излучения и спектры. Кванты (12ч)

Задания на использование фотоэффекта. Уравнение Эйнштейна для фотоэффекта

и его использование при решении задач. Фотоны и их параметры.

4. Атом и атомное ядро. (10ч)

Методы регистрации элементарных частиц. Использование закона радиоактивного распада для определения возраста пород. Дефект масс и энергия связи нуклонов в ядре. Деление и синтез ядер. Статистический характер процессов в микромире.

5. Типы задач на движение небесных тел. Обобщение. (10ч)

Современные представления о происхождении и эволюции солнечной системы. Современные представления о происхождении и эволюции Солнца и звезд. Пространственные масштабы наблюдаемой Вселенной. Применимость законов физики для объяснения природы космических объектов.

Тематическое планирование 10 класс

$N_{\underline{0}}$	TEMA	кол-во	кол-во
		часов	CP
1	Правила и приемы решения физических задач по механике.	6	1
2	Задачи по молекулярно-кинетической теории и термодинамике	12	1
3	Строение и свойства газов, жидкостей и твердых тел.	8	1
4	Классификация задач по теме «Электрическое поле»	12	1
5	Правила и приемы решения задач по теме «Законы постоянного тока»	10	1
6	Магнитное поле и электромагнитная индукция.	10	1
7	Электрический ток в различных средах	10	1
		68	7

Тематическое планирование 11 класс

No	TEMA	кол-во	кол-во
		часов	CP
1	Электромагнитные колебания.	14	1
2	Электромагнитные волны.	8	1
3	Световые волны.	14	2
4	Излучения и спектры. Кванты.	12	1
5	Атом и атомное ядро.	10	1
6	Типы задач на движение небесных тел. Обобщение.	10	
	Итого	68	6

УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА.

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н. Соцкий, Физика, 10 класс. Базовый и углубленный уровни. Москва, 2020

Г.Я.Мякишев, Б.Б.Буховцев, В.М. Чаругин, Физика, 11 класс. Базовый и углубленный уровни. Москва, «Просвещение», 2021г.

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

- 1. Орлов В. Л., Сауров Ю. А. «Методы решения физических задач» («Программы элективных курсов. Физика. 9-11 классы. Профильное обучение»). Составитель В. А. Коровин. Москва: Дрофа, 2005 г.
- 2. Зорин Н. И. «Элективный курс «Методы решения физических задач»: 10-11 классы», М., ВАКО, 2007 г. (мастерская учителя).
- 3. Каменецкий С. Е., Орехов В. П. «Методика решения задач по физике в средней школе», М., Просвещение, 1987 г.
- 4. Ромашевич А. И. «Физика. Механика. 10 класс. Учимся решать задачи», М., Дрофа, 2007 г.
- 5. Балаш В. А. «Задачи по физике и методы их решения», М., просвещение, 1983 г.
- 6. Яворский Б. М., Селезнев Ю. А. «Справочное руководство по физике для поступающих в вузы и для самообразования», М., Наука, 1989 г.
- 7. Бобошина С. Б. «ЕГЭ. Физика. Практикум по выполнению типовых тестовых заданий», М., Экзамен, 2009 г.
- 8. Курашова С. А. «ЕГЭ. Физика. Раздаточный материал тренировочных тестов», СПб, Тригон, 2009 г.
- 9. Москалев А. Н., Никулова Г. А. «Готовимся к единому государственному